Text about engine

s mixed with fuel (typically JP fuel) and then ignited. The burning of the fuel raises the temperature of the air which is then exhausted out of the engine creating thrust. A modern turbofan engine can operate at as high as 48% ef

Text about engine Volkswagen smoking exhaust

Jet engine

Jet engine
Main article: Jet engine
Turbofan Jet Engine

Jet engines use a number of rows of fan blades to compress air which then enters a combustor where it is mixed with fuel (typically JP fuel) and then ignited. The burning of the fuel raises the temperature of the air which is then exhausted out of the engine creating thrust. A modern turbofan engine can operate at as high as 48% efficiency. 24

There are six sections to a Fan Jet engine:

Fan
Compressor
Combustor
Turbine
Mixer
Nozzle


Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


About automotive industry

The automotive industry is a wide range of companies and organizations involved in the design, development, manufacturing, marketing, and selling of motor vehicles.1 It is one of the world's most important economic sectors by revenue. The automotive industry does not include industries dedicated to the maintenance of automobiles following delivery to the end-user, such as automobile repair shops and motor fuel filling stations.

The term automotive was created from Greek autos (self), and Latin motivus (of motion) to represent any form of self-powered vehicle. This term was proposed by SAE member Elmer Sperry

Źródło: https://en.wikipedia.org/wiki/Automotive_industry


History of electric motor

Perhaps the first electric motors were simple electrostatic devices created by the Scottish monk Andrew Gordon in the 1740s.2 The theoretical principle behind production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821. A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a close circular magnetic field around the wire.3 This motor is often demonstrated in physics experiments, brine substituting for toxic mercury. Though Barlow's wheel was an early refinement to this Faraday demonstration, these and similar homopolar motors were to remain unsuited to practical application until late in the century.


Jedlik's "electromagnetic self-rotor", 1827 (Museum of Applied Arts, Budapest). The historic motor still works perfectly today.4
In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils. After Jedlik solved the technical problems of the continuous rotation with the invention of the commutator, he called his early devices "electromagnetic self-rotors". Although they were used only for instructional purposes, in 1828 Jedlik demonstrated the first device to contain the three main components of practical DC motors: the stator, rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windings

Źródło: https://en.wikipedia.org/wiki/Electric_motor



© 2019 http://garazfest.com.pl/